搜索结果: 1-6 共查到“计算机应用 2DPCA”相关记录6条 . 查询时间(0.062 秒)
基于SVM-2DPCA的X光胸片异常筛查
X光片 图像分类 支持向量机
2009/9/27
基于统计学习理论的支持向量机分类算法,提出一种X光胸片异常筛查系统,能够自动判别胸片的正常和异常。为了提高SVM算法的效率,利用小波变换等预处理手段去除对判读无用的图像冗余信息,采用二维主成分分析进一步降低图像特征维数。实验结果表明,SVM用于医学X光片异常筛查可行且有效、识别率高。
基于方向极傅里叶频谱2DPCA 的尾迹检测
二维主成分分析 傅里叶频谱 方向极傅里叶频谱
2009/9/8
针对航空图像中的水面尾迹, 提出了一种基于方向极傅里叶频谱二维主成分分析(Two-dimensional principal component analysis, 2DPCA)的尾迹自动检测算法. 该方法根据子图像的纹理方向, 对傅里叶频谱进行极坐标变换, 使得到的方向极傅里叶频谱具有平移和旋转不变性. 相对于文献中对极频谱的直接划分作为纹理特征, 本文对它进行一次列二维主成分分析, 一次行...
基于模块化2DPCA和CSKDA的人脸验证
客户相关的核判别分析 模块化2DPCA 特征抽取 人脸验证
2009/8/12
针对客户相关的核判别分析(CSKDA)对图像列向量进行处理数据维数大、计算复杂,对图像整体处理没有考虑到局部特征等缺点,提出M2DPCA和CSKDA结合的方法。新方法对二维数据进行分块后采用2DPCA抽取局部特征,施行CSKDA,不仅考虑了类内、类间的差异,而且可以较好地描述不同个体人脸间的差异性。在XM2VTS和ORL人脸库上的实验结果表明,该方法在验证效果上优于CSKDA方法。
基于对角DCT与2DPCA算法的人脸识别
二维主元分析 图像重建 人脸识别
2009/6/25
提出了一种对角离散余弦变换(Discrete Cosine Transform,DCT)和二维主元分析(Two-Dimensional Principal Component Analysis,2DPCA)相结合的人脸识别方法。该算法首先将人脸图像转换成对角图像,同时利用DCT压缩并重建人脸图像;然后通过2DPCA进行特征提取得到人脸识别特征;最后运用最近邻分类器进行识别。基于ORL(Olivet...
基于2DPCA的特征融合方法及其应用
特征融合 弱小目标 图像匹配
2009/6/16
通过对图像特征融合的一般规律的研究,提出了一种基于二维主成分分析(简称2DPCA)的图像特征融合算法。首先选取包括分形特征、多向多尺度梯度特征、局域灰度概率特征在内的目标图像的多种特征,组成特征向量,对该向量进行二维主成分分析,得到一个变换矩阵,再利用该变换矩阵和原特征向量的乘积得到新的综合特征。该综合特征即为经过融合后得到的特征。在对弱小目标匹配跟踪的仿真结果表明,该方法效果优于常规的灰度匹配和...