搜索结果: 1-11 共查到“计算机科学技术基础学科 Mean-Shift”相关记录11条 . 查询时间(0.109 秒)
基于改进Mean Shift的运动目标跟踪算法
均值漂移 卡尔曼滤波器 遮挡处理 目标跟踪
2016/7/25
为了提高传统Mean Shift算法在目标快速运动和被大面积遮挡两种情况下跟踪的效果,对Mean Shift跟踪算法进行了3点改进:采用Kalman滤波器预测运动目标轨迹,以提高算法对快速运动目标的鲁棒性;提出了一种融合Kalman滤波器残差和Bhattacharyya系数的遮挡处理机制,以提高目标被大面积遮挡时的跟踪效果;提出了一种基于自适应更新因子的目标模型更新机制,以提高动态适应能力。对比实...
基于复杂特征融合的改进mean shift目标跟踪
目标跟踪 均值转移算法 Gabor 小波 特征融合
2014/7/21
提出一种融合Gabor 小波纹理特征与颜色特征的改进mean shift 目标跟踪算法. 首先, 提取移动目标的颜色特征和纹理特征直方图; 其次, 基于mean shift 算法定义融合相似度系数, 对特征空间进行融合并得出目标中心位置; 再次, 通过定义特征自适应系数来融合基于颜色和纹理特征的目标位置; 最后, 对上述结果进行处理, 得到目标最终位置. 实验结果表明, 该算法在跟踪目标存在变形、...
一种基于空间直方图的Mean-Shift跟踪算法
目标跟踪 Mean-Shift跟踪 颜色直方图 空间颜色直方图 相似性度量
2010/8/24
经典的Mean-Shift跟踪算法以颜色直方图为特征对目标进行跟踪。颜色直方图反映的是图像中颜色的组成情况,即出现了哪些颜色以及各种颜色出现的次数。颜色直方图具有旋转不变性、缩放不变性等优点,经常用于图像检索,即通过比较颜色直方图的差异来衡量两幅图像在颜色全局分布上的差异。但是颜色直方图不能反映颜色的空间分布特征,当跟踪目标与背景色颜色相近时可能造成错误跟踪,导致跟踪失败。考虑目标颜色空间分布特征...
基于Mean-Shift的广播音频聚类算法
主成分分析 均值漂移算法 快速近邻法
2009/11/30
针对大多数聚类算法依赖聚类数目这一先验知识的不足,提出一种基于均值漂移(Mean-Shift)的新广播音频聚类算法。对需聚类的音频段选取基于小波域的特征构造特征集合,通过主成分分析方法降低所提取特征中的冗余信息。在此基础上,采用Mean-Shift算法对音频信号进行初步聚类,然后利用快速近邻法对其聚类结果进行一次修正,最后合并仅含有单个样本类别的类进行二次修正。实验结果表明,该算法的聚类精度有一定...
基于粒子滤波和Mean-shift的跟踪算法
粒子滤波 Mean-shift算法 目标跟踪
2010/3/4
粒子滤波作为一种基于贝叶斯估计的算法,在处理非线性运动目标跟踪问题上具有特殊的优势。基于此,提出一种基于粒子滤波和Mean-shift的混合跟踪算法(KMSEPF)。KMSEPF算法对一般的Mean-shift和粒子滤波混合算法进行改进。结果证明,KMSEPF算法与混合算法MSEPF相比,在计算效率提高的同时,跟踪准确性和处理遮挡的能力没有下降。
一种分层Mean Shift目标跟踪算法
分层Mean shift 聚类模式点 匹配
2009/9/7
针对经典Mean shift (MS)目标跟踪算法的颜色特征鲁棒差、匹配迭代复杂的缺点, 提出一种分层Mean shift (Hierarchical mean shift, HMS)目标跟踪算法. 首先通过MS迭代将目标区域特征空间的数据点聚类于模式点, 使得以简洁的方式描述前景跟踪目标, 建立目标模型与目标候选模型的聚类模式点描述, 进行聚类块匹配. 然后, 导出聚类块模式点匹配下的相似度...
结合Kalman滤波器的Mean-Shift跟踪算法
Mean-Shift 快速运动目标跟踪 Kalman滤波
2009/7/15
针对经典Mean-Shift算法要求相邻两帧间目标模板区域必须重叠的缺陷,结合Kalman滤波器,提出了改进算法。算法首先将Kalman滤波器预测的目标位置作为Mean-Shift算法中的初始搜索中心进行跟踪,然后再将Mean-Shift算法得到的新的目标位置作为下一帧Kalman滤波器的输入参数,循环执行。实验证明,该算法能够解决由于目标运动速度突然变化以及目标快速运动情况下所带来的相邻两帧间目...
基于mean-shift的快速跟踪算法设计与实现
霍夫变换 直线检测 快速算法
2009/4/24
介绍了一种基于mean-shift跟踪算法,分析了mean-shift中各参数对实时性能的影响。并利用DM642EVM作为视频信号处理器,设计了一套运动目标全物理仿真实验系统。
基于Mean-Shift的投影聚类算法PCMF
子空间划分 直方图 Mean-Shift
2009/4/24
高维数据的聚类都隐含在低维的子空间内。为找出有效的子空间,Agrawal等人提出了投影聚类概念,通过映射变换转换到子空间里,然后借助其他方法找到聚类。该文基于目前最新的投影聚类算法EPCH,提出了PCMF算法,借助Mean-Shift划分子空间聚类。与EPCH算法相比,PCMF在划分子空间中数据时,无须输入参数(EPCH中是最大聚类个数),能够有效降低划分出的子空间数量,获得与EPCH相媲美的实验...
一种改进的Mean Shift跟踪算法
模型管理 非单调逻辑 假设环境
2008/12/11
本文主要针对经典的Mean Shift跟踪算法均匀剖分整个颜色空间造成许多空的直方图区间以及不能准确表达目标颜色分布的缺点, 提出了一种改进算法. 该改进算法首先对目标的颜色进行聚类分析, 根据聚类结果通过矩阵分解和正交变换自适应地剖分目标的颜色空间从而确定对应于每一聚类的子空间. 在此基础上定义了一种新的颜色模型, 该模型统计落入每一颜色子空间的像素的加权个数并用高斯分布建模每一个子空间的颜色分...
Mean Shift算法的收敛性分析
Mean Shift算法 收敛性分析
2008/3/10
作为迭代算法,Mean Shift的收敛性研究是应用的基础,而Comaniciu和李乡儒分别证明了Mean Shift的收敛性,但证明过程存在错误.首先指出了Comaniciu和李乡儒的证明过程存在错误;然后,从数学上重新证明了Mean Shift算法的局部收敛性,并指出其收敛到局部极大值的条件;最后,从几何上举反例分析了Mean Shift的收敛性,并进行了深入比较和讨论.这为Mean Shif...