搜索结果: 1-1 共查到“农业工程 Multi-level”相关记录1条 . 查询时间(0.625 秒)
基于小波变换和BP神经网络的蛋壳破损检测(Crack Detection in Eggs with Multi-level Wavelet Transform and BP Neural Network)
鸡蛋 破损 检测
2009/5/22
提出了一种基于多层小波变换和纹理分析的蛋壳破损检测方法。该方法对获取的鸡蛋透射图像G分量在不同水平上进行小波分解,计算和分析各水平高频细节子图像的纹理特征参数,实验确定最有效的8个特征参数作为BP网络输入,建立结构为8—20—2的BP神经网络蛋壳破损分类模型。实验表明,该方法对无破损蛋、线状破损蛋、网状破损蛋和点状破损蛋的判别正确率分别为95%、90%、95%、80%,平均识别率为90%。