理学 >>> 物理学 >>> 电子物理学 >>> 量子电子学 电子离子与真空物理 带电粒子光学 电子物理学其他学科
搜索结果: 1-15 共查到知识要闻 电子物理学相关记录753条 . 查询时间(2.265 秒)
在人工神经网络中,张量作为多维数组,在数据结构中扮演着核心角色。近年来,随着深度学习领域的蓬勃发展和生成式人工智能技术的兴起,神经网络模型的复杂度持续攀升,模型参数量更是呈现出爆炸式的增长态势。然而,面对庞大的张量计算需求,传统的存储和处理分立的电子计算硬件面临计算延迟大、功耗高等问题,从而成为了制约人工智能领域快速进步的一大瓶颈。
稀磁半导体兼具半导体材料和磁性材料的双重特性,是破解后摩尔时代难题的候选材料之一。美国国家科学研究委员会(National Research Council)早在1991年就指出稀磁半导体在信息通讯、处理和存储等方面有着广泛的应用前景。2005年《Science》创刊125周年之际发布的125个重大科学问题,其中包括“能否得到室温铁磁性半导体”。(Ga,Mn)As为代表的III~V体系,是稀磁半导...
高性能锂离子电池正极材料是实现下一代长续航、长寿命电动汽车的关键。然而,当前锂离子电池的能量密度和循环寿命呈倒置关系,其中电极材料与电解液的界面副反应则是主要诱因之一。表面包覆是减缓电解液与正极之间副反应的最有效途径之一。然而,传统包覆工艺通常只关注包覆层本身的作用,较少考虑其与电解液的相互作用及后续的原位转化产物对电池性能改善的机理。
中国科学技术大学郭光灿院士团队在量子电路等价性实验研究中取得重要进展。该团队李传锋、柳必恒等人与清华大学魏朝晖助理教授合作,实现了基于贝尔非局域性的量子电路等价性检验。该工作于12月23日发表在国际知名期刊Physical Review Letters上。
超快激光技术具备精确操纵材料的结构和功能的能力,在光与物质相互作用的研究中具有重要的科学意义和广阔的应用前景。在过去十年里,超快激光驱动铁电材料相变取得了重大突破,为基于铁电的非易失性存储器的超快调控提供了新的途径。然而,目前强激光脉冲仅能导致铁电极化降低或部分瞬态翻转,尚未实现完全的铁电极化翻转。这些现象的根原以及在铁电材料中实现完全铁电极化翻转的可能性尚不清楚,需要更有效的激光诱导铁电极化翻转...
半个世纪以来,古姆星云可能是背景脉冲星散射屏的观点多次被提及,但始终未获得证实。依托上海天马望远镜对脉冲星B0740-28星际闪烁现象的长期“双频同时”监测结果,中国科学院上海天文台和北京大学研究人员成功找到回答该历史疑问的直接证据,研究成果于2024年12月10日刊发于《中国科学:物理学 力学 天文学》英文版(SCIENCE CHINA Physics, Mechanics & Astronom...
近日,南京大学物理学院孙建教授团队预言了一种新型电子化合物K(NH3)2,并揭示其在一定压强下存在由间隙电子诱导的准二维自旋佩尔斯相变。
2024年12月13日,强流重离子加速器装置(HIAF)项目团队自主研发的高性能核心电子学设备在惠州顺利通过专家组现场测试评审。中国工程物理研究院邓建军院士担任专家组组长,与来自中国科学院高能物理研究所等单位的13位束测与电子学领域专家,共同对HIAF的13种核心电子学设备进行了全面测试。专家组一致认为,系列设备在实测参数上远超预期设计指标,部分关键参数达到了国际领先水平,这也标志着该电子学系列设...
手性电荷密度波(chiral CDW)是一种通常出现于低温下的关联电子物态,其表现为电荷密度在空间中的周期性调制,并伴随着破缺镜面以及中心对称性的晶格结构畸变。这种物态被认为与许多新奇的物理现象有关,例如非局域霍尔效应、手性库伯对(chiral Copper pairs)、轴子绝缘体(Axion insulator states)等。但是,到目前为止,人们对手性电密度波形成的机理还没有一个足够的认...
针对上述挑战,中国科学院微电子研究所乔树山研究员团队提出了压缩感知下多波段图像信息有限分布理论(Restricted Distribution Property),该理论允许在不重建图像的情况下,保留数据中的重要判别信息。基于该理论,团队提出了基于Kullback-Leibler(KL)散度的光谱特征评价体系,以及广义协方差保留特性(Sample Covariance Preservation)。...
尽管钙钛矿太阳能电池(PSCs)的功率转换效率取得了显著进展,但器件的不稳定性仍然是其商业化应用的一大障碍。这种不稳定性主要源于卤素离子,尤其是碘离子(I⁻)的迁移。在光照和热应力作用下,I⁻会发生迁移并转化为I₂,从而导致不可逆的降解和性能损失。因此,抑制PSCs器件中I-迁移至关重要。
下一代信息系统(6G)是未来十年全球最重要的综合性数字信息基础设施之一,将突破传统移动通信范畴,实现通信、感知、计算、智能等多技术集成创新,呈现跨学科、跨行业、跨领域融合发展趋势,全面引领驱动经济社会数字化转型。新一代工业物联网可将前沿新型信息技术深度融入到工业生产及社会运行的各个环节,是6G生态系统中的重要组成部分。然而,随着信息技术的高速发展,海量物联终端的爆炸式增长、非正交混叠现象的普遍出现...
室温钠硫(RT Na-S)电池以低成本、无毒、储量丰富的钠和硫为活性材料,具有极高的能量密度(1274 Wh kg-1),在储能系统中具有广阔的应用前景。传统的室温钠硫电池通常采用金属钠作为阳极,在安全性和界面稳定性方面面临很大挑战,严重限制了其商业化前景。硫化钠(Na2S)是室温钠硫电池无钠阳极体系下最有前途的初始正极材料,并且其能够避免正极体积膨胀的问题。然而,硫化钠受到电子导电性差、传递动力...
2024年11月22日,中国科学院大连化学物理研究所能源催化转化全国重点实验室动力电池与系统研究部(DNL2900组群)陈忠伟院士、张永光研究员、罗丹研究员团队在干法电极技术领域取得新进展。团队创新性地将多功能锂离子交换沸石(Li-X)加入高载量干法工艺制备的锂电池正极中,有效解决了超高面载量下电极离子和电子传输迟滞、电解液浸润性差等问题,为高比能锂电池的开发和实际应用提供了新思路。
水系电池由于具备本质安全、低成本、环保的特点,有望在未来大规模储能中实现应用,但是水系电池固有的瓶颈——负极界面的析氢问题严重限制了水系电池的寿命。电解质界面中间相(SEI)可以从动力学上抑制析氢反应,而传统的阴离子还原形成SEI高度依赖于高浓度的有机含氟盐(LiTFSI),受制于电解液传质以及负极负电荷排斥,导致依赖盐阴离子构建的SEI形成效率低且消耗时间长,并会显著增加电池极化。摆脱SEI构建...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...