工学 >>> 计算机科学技术 >>> 计算机应用 >>> 计算机图象处理 >>>
搜索结果: 1-15 共查到计算机图象处理 Contourlet相关记录25条 . 查询时间(0.062 秒)
针对北京1号小卫星的多光谱与全色波段的分辨率比率较大,传统的融合方法会产生边界模糊和光谱扭曲现象,提出了一种新的融合算法。首先对多光谱与全色影像分别进行Iαβ和Contourlet变换;然后在频率域中采用不同的融合策略进行处理;最后进行Contourlet和Iαβ逆变换,得到融合图像。实验表明,本方法既提高了融合图像的空间细节信息又很好地保持了图像的光谱特征,优于传统的融合方法。
提出一种Contourlet变换域中基于矩特征的图像检索方法。为了提高方法对于噪声的鲁棒性,对图像进行Contourlet变换后,对变换结果进行阈值滤波,计算各子带系数的一阶几何矩作为图像的特征向量,采用欧氏距离进行相似度度量。该方法提取的图像特征能反映子带系数的空间分布特征,无需任何前提假设。实验结果表明,该方法具有较高的查准率,对噪声的容忍度高于现有算法。
基于人类视觉系统和源图像特性,该文提出一种非下采样Contourlet域图像融合算法,并讨论了分解层数和方向分解数对融合结果的影响。低通子带引入闭环反馈策略自适应获取近似最优融合权值;高通子带则基于区域能量定义像素活性测度,以有效增强图像的对比度,并保持细节信息。实验结果表明:该文提出的图像融合新算法具有较好的鲁棒性,融合图像边缘的清晰度和连续性也较理想。
探讨了Contourlet变换域的图像视觉信息的置乱掩蔽问题,提出了一种基于零树编码结构的快速置乱算法。算法使用高效混沌映射构造置乱矩阵,对Contourlet系数矩阵进行子树间置乱,以减少系数置乱所带来的对编码效率的影响。实验结果表明该置乱算法效率高,并能有效实现对图像视觉内容的掩蔽。
针对SAR图像超分辨重构问题,建立了基于多尺度Contourlet域的正则化模型。在选取正则化参数时,提出一种自适应确定方法,该方法无需知道噪声大小和图像的先验知识,提高了确定正则化参数的准确性;求解模型时用FR共轭梯度法来改善算法的收敛性。将该算法分别与空域中正则化算法和小波域中正则化算法进行了比较,仿真实验结果表明,该算法较好地再现了各种边缘信息,其重构结果均优于其他两种方法。
为提高图像检索性能,使用Harris彩色点提取器提取颜色特征点,设计一种基于颜色特征点的环形颜色直方图,在对图像进行Contourlet变换的基础上,提出Contourlet直方图的概念,改进其旋转不变性,并提取图像的纹理信息。仿真实验结果表明,该方法能够快速准确地检索彩色图像。
提出了一种基于方向区域特性的非降采样Contourlet域多聚焦图像融合算法。算法将图像进行非降采样Contourlet 变换为不同方向的高低频子带,低频子带和高频子带中分别采用方向区域的方差匹配度和能量作为融合规则, 其中方向区域与当前子带分解方向保持一致,最后,通过反变换得到融合图像。实验结果表明,本文提出的方向区域方法能够更好地体现二维图像中的曲线或直线状边缘特征。将现有的融合算法和本文所提...
该文基于非下采样Contourlet变换(NSCT)和SAR图像的统计特性,提出一种SAR图像增强方法,给出一种基于非下采样塔型分解的斑点噪声方差估计算法和一种基于方向邻域模型的弱边缘增强算法。该文在不同方向子代进行斑点方差估计,利用局部方向统计信息对NSCT系数并进行强边缘、弱边缘和噪声分类并进行弱边缘的增强和噪声的抑制。实验结果表明,该方法在方向信息保留和斑点抑制上优于非下采样小波变换(NSW...
提出一种基于Contourlet变换域的图像滤噪算法,对带噪图像进行多尺度、多方向的Contourlet分解,依据Contourlet变换域系数的估计损失期望最小化准则,在Contourlet域中得到各子带内邻域系数的滤噪最优阈值与最优窗口尺寸,利用Contourlet变换域系数的萎缩实现滤噪。仿真结果表明,与现有的Contourlet变换域图像滤噪算法相比,该算法能有效保护图像的细节和纹理,具有...
针对现有小波类图像融合算法的不足,提出了一种基于非下采样Contourlet变换多聚焦图像融合算法,并在Contourlet域中引入了局部区域可见度以及局部方向能量的概念.针对低频子带系数和各带通方向子带系数分别提出了基于局部区域可见度以及基于局部方向能量的系数选择方案.通过对多聚焦图像融合的仿真实验,表明该算法相对于传统的基于离散小波变换和离散小波框架变换融合算法能够有效减少有用信息的丢失以及虚...
提出一种基于Contourlet特征修正的纹理识别算法,不同分辨率下采取不同的方法提取特征,根据统计规律对每个方向上的纹理特征进行修正增强,利用支持向量机进行识别,以提高纹理图像识别的准确性。实验证明,在受噪声干扰严重的情况下,该方法的识别正确率优于小波、小波包、Ridgelet等算法。
利用 Contourlet 变换良好的稀疏特性及其能准确地捕获图像中边缘信息的特性,分析了纹理图像Contourlet系数的统计特征,提出了一种滤波算法。该算法根据纹理图像Contourlet系数分布的特点,采用高斯模型对其进行精确拟合提取纹理特征,针对各子带数据的离散程度进行加权处理,为分类能力强的特征量赋予较大的权值,并加入在低频子带上提取的灰度—平滑共生矩阵统计量,来形成最终的特征向量,以两...
Contourlet变换(Contourlet Transform,CT)是一种新的多尺度变换,具有良好的多尺度性和多方向性。提出了一种基于Contourlet变换的多聚焦图像融合算法,同时引入Cycle Spinning来有效地消除由于Contourlet变换缺乏平移不变性而产生的图像失真。实验结果表明该算法可获得较理想的融合图像,取得了优于laplacian塔型方法和小波变换方法的融合效果。
分析了非抽样Contourlet变换(Nonsubsampled Contourlet Transform,NSCT)的原理,提出了一种新的基于NSCT的医学图像融合算法,应用NSCTCT和MRI图像进行多尺度、多方向分解,低频子带采取区域能量加权法融合,带通子带采取模最大融合,最后将融合的系数进行NSCT逆变换得到融合图像。实验表明,与其它融合算法比较,该算法融合图像效果较好。
以非下采样Contourlet变换为基础,充分利用了该变换的尺度相关性以及各个尺度方向子带系数的方向性,提出了一种新的图像边缘检测的方法。通过实验,验证了新方法可以更好地把握图像的曲线或直线状边缘特征,与基于小波模的极大值边缘检测方法相比,效果更好。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...